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Age-related hearing loss is a highly prevalent condition, which manifests at both the auditory periphery and
the brain. It leads to degraded auditory input, which needs to be repaired in order to achieve understanding of
spoken language. It is still unclear how older adults with this condition draw on their neural resources to optimally
process speech. By presenting interrupted speech to 26 healthy older adults with normal-for-age audiograms, this
study investigated neural tracking of degraded auditory input. The electroencephalograms of the participants
were recorded while they first listened to and then verbally repeated sentences interrupted by silence in varying
interruption rates. Speech tracking was measured by inter-trial phase coherence in response to the stimuli. In
interruption rates that corresponded to the theta frequency band, speech tracking was highly specific to the
interruption rate and positively related to the understanding of interrupted speech. These results suggest that
older adults’ brain activity optimizes through the tracking of stimulus characteristics, and that this tracking aids
in processing an incomplete auditory stimulus. Further investigation of speech tracking as a candidate training

mechanism to alleviate age-related hearing loss is thus encouraged.

1. Introduction

We live in a society which is getting older and older, a fact that
makes the careful study of the competencies and vulnerabilities of older
adults both relevant and necessary. The prevalence of age-related hear-
ing loss (ARHL) is estimated at approximately 20% at age 60, 50% at age
70 and 70% to 80% at age 80 and older (Bisgaard and Ruf, 2017; Go-
man and Lin, 2016), which makes ARHL one of the most prevalent age-
related conditions. One of the most disruptive consequences of ARHL is
a detrimental effect on the understanding of spoken conversation, which
hinders effective communication and can lead to social isolation (Mick
et al., 2014; Weinstein and Ventry, 1982). The negative outcomes are
many, with loneliness and social isolation mediating a negative rela-
tionship of hearing loss and cognitive decline (Maharani et al., 2019).
Therefore, understanding the processes that lead to successful speech
comprehension in older adults is key to helping them maintain their
social relationships and cognitive stability.

Currently, the only evidence-based intervention for ARHL is the fit-
ting of hearing aids. Although hearing aid use can ameliorate the lis-
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tening situation and the quality of life of older adults tremendously
(Johnson et al., 2018; Stark and Hickson, 2004), compliance is often
poor because hearing aids are of limited use in difficult listening situa-
tions (Bertoli et al., 2009). These difficult listening situations are char-
acterized by spectral or temporal distortions of the auditory signal, both
of which can manifest either at the source or during the transmission of
an auditory signal (Mattys et al., 2012). Examples include syllable dele-
tion, segment elision, disfluency, an unfamiliar accent, time-compressed
speech, speaking over the phone, concurrent speakers, background noise
and reverberation. It has also been shown that, for temporal waveform
distortions, increasing the sound level of the auditory signal (which is
the main function of a hearing aid) is not an effective measure to maxi-
mize performance (Gordon-Salant and Fitzgibbons, 1993). Another com-
mon temporal distortion is the interruption of speech (Baskent et al.,
2010; Bologna et al., 2018; Gordon-Salant and Fitzgibbons, 1993; Miller
and Licklider, 1950; Profant et al., 2019; Saija et al., 2014; Wingfield
et al., 1991), which can be the result of signal transmission errors from
electronic devices, or which can manifest at the perceptual level as the
result of poor signal transmission from the ear to the brain.
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Although interrupted or “gated” speech (i.e., speech which is inter-
rupted by intervals of silence) results in incomplete speech segments,
it can still be surprisingly easy to understand as long as a listener has
normal hearing acuity. In certain circumstances, it is possible to un-
derstand nearly all of a speech signal of which 50% has been replaced
by silence (Gilbert et al., 2007; Miller and Licklider, 1950). Wang and
Humes (2010) investigated the influence of three parameters on inter-
rupted speech understanding. These were on-duration (i.e., the absolute
duration of the sound intervals), duty cycle (i.e., the relative duration
of speech within each interruption cycle) and interruption rate (IR; the
number of interruptions per second). They found that duty cycle pri-
marily determined performance, but both IR and on-duration modified
performance as well. Keeping the on-duration fixed, a higher IR results
in a higher number of glimpses at the original signal. Understanding
typically declines sharply when the IR becomes lower than the average
syllabic rate of speech (~5 Hz; Bologna et al., 2018; Ding et al., 2017).
Other factors that influence the understanding of interrupted speech are
the presence of contextual (e.g., lexical or syntactic) information and the
fundamental frequency of the speaker (Wang and Humes, 2010; Wing-
field et al., 1991).

In their seminal study, Gordon-Salant and Fitzgibbons (1993) com-
pared younger and older adults in interrupted speech understanding
while including participants with clinically relevant peripheral hearing
loss in each of the two age groups. They showed that both age and
hearing loss influenced interrupted speech understanding. Similarly,
in the study of Baskent et al. (2010), their data suggested that older,
more hearing-impaired participants showed worse understanding of in-
terrupted speech than younger participants with none or only a mild
hearing loss, although this question was not statistically tested in the
paper and the relation of age and hearing loss was not controlled for re-
garding this particular outcome variable. Shafiro et al. (2016) also found
a difference in interrupted speech understanding between younger and
older adults at IRs of 2 and 4 Hz. Taken together, it seems that younger
and older adults differ on average in their ability to understand inter-
rupted speech, and that hearing loss has an additional detrimental effect.

1.1. Cognitive repair mechanisms: domain-general?

If there is a difference in the percentage of remaining speech signal
and understood speech signal, one must assume that some kind of repair
of the missing input has taken place. The concept of repair mechanisms
has been proposed by Baskent et al. (2010) and it is assumed that these
repair mechanisms are somehow related to cognitive ability. Indeed, the
positive influence of repair mechanisms associated with cognitive ability
on speech understanding in adverse listening situations is a common
research finding and is implied in several empirically grounded models
of effortful listening (Arlinger et al., 2009; Pichora-Fuller et al., 2016;
Ronnberg et al., 2013). In the Ease of Language Understanding (ELU)
model (Ronnberg et al., 2013), the storage and processing aspects of
working memory enable phonological, lexical, and semantic retrieval
and pattern matching, which is important when listening to partially
masked speech. The Framework for Understanding Effortful Listening
(Pichora-Fuller et al., 2016) underscores the importance of attention
and how it governs the allocation of cognitive capacity to cope with
listening demand.

The most common test for the level of listening demand, or effort-
ful listening, is the speech-in-noise paradigm. The paradigm of inter-
rupted speech is less frequently employed and therefore the findings on
the influence of cognition on understanding interrupted speech are few.
In a study by Benard et al. (2014), receptive vocabulary predicted un-
derstanding of speech interrupted at a rate of 2.5 Hz in an age-diverse
sample. Bologna et al. (2018) tested younger and older participants on
understanding interrupted speech and additionally administered a cog-
nitive test battery encompassing processing speed, working memory,
inhibitory control, and visual linguistic closure, which is a measure of
the ability to infer written language that is presented behind visual ob-

Neurolmage 262 (2022) 119580

structions (see Zekveld et al., 2007). Only processing speed and visual
linguistic closure predicted understanding of interrupted speech, both
across age groups.

The paradigm of visual linguistic closure can be considered a vi-
sual analogue of interrupted speech. As such, the relationship be-
tween visual linguistic closure and understanding of interrupted speech
is particularly interesting. The finding of such a relationship by
Bologna et al. (2018) raises the question of whether cognitive re-
pair mechanisms are rooted within the auditory domain or whether
they draw upon a domain-general cognitive resource. Indeed, the ELU
posits both a modality-specific and a modality-independent capacity
(Ronnberg et al., 2013). In our study, we continued this line of thought
and investigated whether there was a correlation between visual lin-
guistic closure and interrupted speech understanding as well as between
visual linguistic closure and a measurement of the neural tracking of in-
terrupted speech. A correlation between tests of interrupted language
understanding in the auditory and visual domains would point to a
domain-general capacity, and finding that correlation again between
visual linguistic closure and neural speech tracking would provide evi-
dence for neural speech tracking being a candidate mechanism involved
in the manifestation of such a domain-general capacity in the auditory
domain.

1.2. Cortical tracking mechanisms during speech processing

Aging is associated with the loss of fine inner and outer hair cells in
the cochlea. This loss impairs the ability to perceive and discriminate
sounds. It is thus productive to focus research on central neural pro-
cesses that support the processing of degraded auditory signals. A better
understanding of how older adults’ brain activity processes incomplete
speech signals will inform better interventions for ARHL. In the current
study, we aimed to investigate the brain processes that underlie older
adults’ understanding of interrupted sentences. Specifically, we investi-
gated whether neural tracking of interrupted speech would take place
and if yes, whether there was a statistical relationship between the dif-
ficulty of understanding the interrupted speech signal and the strength
of neural speech tracking.

The notion of an alignment between the speech signal and the
neural activity related to its processing is not new. The TEMPO
model (Ghitza, 2011) as well as the later model by Giraud and Poep-
pel (2012) posit a mechanism by which intrinsic cortical oscillations be-
come synchronized to the inherent, quasi-rhythmic properties of speech
(Peelle et al., 2013). This mechanism has been called “entrainment”, and
many following studies have been dedicated to elucidate its importance
for speech processing. However, it is very difficult to provide actual ev-
idence for an intrinsic oscillator, and many scientific results that have
been framed in an entrainment context can be equally well explained by
superposition of evoked responses (Alexandrou et al., 2020; Obleser and
Kayser, 2019). For this reason, we refer to the alignment of the neural
response to the speech signal in our study as “neural speech tracking”,
which is a more general term and which does not assume an intrinsic
oscillator as the underlying source of the observed neural activity.

At the heart of this alignment between speech and neural oscillations
is the notion of different time scales. It is presumed that linguistic fea-
tures operating on different time scales (e.g., prosody, phrase structure,
syllables, phonemes) are tracked by functionally distinct components of
brain activity (“frequency bands”), which share the temporal resolution
of the corresponding linguistic units (Ding et al., 2016; 2017; Giraud
and Poeppel, 2012; Keitel et al., 2018; Poeppel, 2003).

The reason why this mechanism should take place is that an align-
ment between neural frequency-related activity and these specific time
scales in the speech signal optimizes the firing rate of neuronal assem-
blies in such a way that they are maximally excitable when there is an
acoustic signal to process, and they recover when there is less acoustic
signal to process (Giraud and Poeppel, 2012). The interrupted speech
paradigm fits particularly well within this framework, as one can make
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sure that there are periods in the speech signal which are ideally suited
for neuronal recovery (i.e., the silent period).

Neural speech tracking is a robust phenomenon and it exhibits con-
siderable inter-individual variability (Lam et al., 2018). Studies employ-
ing transcranial alternating current stimulation (tACS) have provided
evidence that neural speech tracking is not simply an epiphenomenon
of speech processing, but that it serves a causal role (Riecke et al., 2018;
Wilsch et al., 2018; Zoefel et al., 2018). In these studies, an electric al-
ternating current signal was applied to participants’ brains while they
performed speech-related tasks. The frequency of the alternating current
carried information about the temporal envelope of the speech stimuli
presented. In all three studies, participants’ task performance signifi-
cantly differed with regard to the phase angle of the alternating cur-
rent that was used for stimulation. While these results are intriguing,
the spatial resolution of tACS is limited (Yang et al., 2021) and it is un-
clear where exactly in the brain the stimulation takes effect (Obleser and
Kayser, 2019).

A current question is whether neural speech tracking changes in ad-
verse listening situations and, if yes, whether it changes in a qualitative
or in a quantitative way. Haegens and Zion Golumbic (2018) conclude
that neural speech tracking is primarily initiated by automatic, bottom-
up processes, but that it can be modulated by top-down control (see also
Lakatos et al., 2016; 2019; Park et al., 2015; Petersen et al., 2017). Be-
cause ARHL alters the encoding of the speech signal in the brainstem
(Anderson et al., 2013; Bidelman et al., 2019; 2014), which then serves
as the basis for acoustic analyses in the auditory cortex, it is important to
investigate mechanisms that optimize processing of the auditory input.
If neural speech tracking is indeed causally related to speech decoding,
the most obvious mechanism to enhance decoding would be to increase
speech tracking. Research shows that the relationship is not that sim-
ple. Petersen et al. (2017) found that better hearing thresholds were
not related to increased speech tracking, but to decreased tracking of a
competing speech signal, which had to be ignored. A recent study by
Presacco et al. (2019) found that hearing loss modulated neither speech
tracking at the midbrain nor at the cortical level, but instead modulated
the reciprocal connections between lower and higher levels of the audi-
tory pathway.

These results, however, were all obtained using a speech-in-noise
paradigm. As an alternative, interrupted speech is an interesting test
case for speech tracking for several reasons. An adverse listening condi-
tion may not always arise from noise continuously masking speech, but
also from noise interrupting speech at intervals, like during an unstable
telephone connection. Interrupted speech rather than speech-in-noise is
a better model of such a situation. Additionally, whenever the speech
signal is resumed after a period of silence, sharp edges in the signal are
created. These sharp edges are hypothesized to trigger phase resets of
ongoing neural oscillations (Doelling et al., 2014; Giraud and Poeppel,
2012; Lakatos et al., 2019), and thereby induce an “entrainment” of said
ongoing neural oscillations to the speech signal. It is possible that the
more sharp edges an interrupted speech signal contains, a stronger cor-
respondence between neural activity and the speech signal is observed,
which might explain the high rates of understanding in conditions with
a high IR (Gilbert et al., 2007).

1.3. Study design and hypotheses

Building upon previous research, our study aimed to investigate neu-
ral tracking of interrupted speech in healthy older adults. Specifically,
we investigated whether neural speech tracking would occur in the fre-
quencies corresponding to the IRs of the interrupted speech signal.! Fur-
ther, we investigated neural speech tracking as a function of hearing and
cognitive ability. During our experiment, older adults listened to sen-

1 In the remainder of the text, we will refer to this phenomenon as “neural
tracking in the IRs”.
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tences interrupted with silent periods in different IRs. We aimed to min-
imize the distortions of the auditory signal caused by peripheral hearing
impairment by sampling older adults who would be considered normal
hearing or having only very mild hearing loss in clinical practice. This
ensured that auditory deprivation—as much as possible-did not confound
the neural processes under study. Because past research showed that of
the parameters determining interrupted speech, the duty cycle was the
most important parameter predicting interrupted speech understanding
(Wang and Humes, 2010), we primarily manipulated the duty cycle to
obtain different stimulus conditions. When faced with the decision to
either keep on-duration or the length of the silent interval fixed, we de-
cided to fix the length of the silent interval in order to have better control
over how much signal would be missing. In three of the four conditions,
the silent interval that masked the sentences was 100 ms long, which is
approximately the median length of a syllable (Greenberg et al., 2003).
We implemented a fourth experimental condition with a silent interval
length of 50 ms. This condition has the same duty cycle (0.5) as one
of the other three conditions, but it is easier due to the shorter silent
interval length. This fourth condition therefore allows to investigate the
relative influence of silent interval length on neural speech tracking and
on interrupted speech understanding.

We expected that an increase in neural speech tracking would be re-
lated to better understanding of the interrupted sentences. Each of our
experimental conditions exhibited a different IR, and therefore a sin-
gular frequency in which speech tracking would ideally take place in
order to maximize excitability of the underlying neuronal assemblies
(Giraud and Poeppel, 2012). Also, the interrupted speech paradigm is
akin to an auditory frequency-tagging paradigm (e.g., Bharadwaj et al.,
2014; Buiatti et al., 2009; Weisz and Lithari, 2017), with which an audi-
tory steady-state response can be elicited (Picton et al., 2003). For this
reason, one would expect that in a certain condition, we observe a neu-
ral response of the auditory cortex which is particularly strong in the IR
of that condition.

For each condition, Fig. 1 illustrates the relationships between the
IR frequency, the IR period, and the lengths of the silent and sound
intervals by plotting these parameters onto an example waveform from
each condition.

Since, in all sentences in each condition, the silent intervals always
start and end at the same points in time relative to sentence onset,
one can measure speech tracking in the specific IR by means of inter-
trial phase coherence (ITPC; Delorme and Makeig, 2004), which is also
known as phase-locking factor (Jervis et al., 1983; Tallon-Baudry et al.,
1996). This method extracts the phase in each trial in specified frequen-
cies for specified time points and quantifies their similarity across trials.
ITPC can range between 0 and 1. For a concise, non-technical descrip-
tion of ITPC, see Roach and Mathalon (2008). Another possible measure
to quantify the neural response to a stimulus in a certain frequency is
spectral power (e.g., Ding et al., 2016). In our case, however, power
would not constitute the best measure for neural tracking. Power re-
flects both the number of neurons involved in stimulus processing as
well as their temporal synchronization (Werkle-Bergner et al., 2009).
Therefore, it is reasonable to choose a measure which reflects only tem-
poral synchronization, i.e., phase (Lachaux et al., 1999). Also, an inte-
gral part of our study is the investigation of inter-individual differences
in older adults. It has been shown that cortical surface area is related
to the strength of ERP amplitudes in healthy older adults (Giroud et al.,
2019). Thus, it is reasonable to assume that inter-individual differences
in brain structure due to age-related cortical atrophy would also con-
found a measurement of spectral power on the scalp. Therefore, ITPC as
a measure of temporal synchronization irrespective of signal strength is
a more appropriate measure of neural tracking than spectral power in
the current study.

Additionally, we aimed to investigate whether there would be mod-
ulation of speech tracking by a domain-general cognitive ability related
to the repair of missing sensory input. We hypothesized that perfor-
mance in interrupted sentence understanding would correlate between
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Condition 100 100
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Fig. 1. Stimulus examples.Note. This figure illustrates the four experimental conditions. Each condition is defined by the lengths of their sound segments and silent
intervals. These two lengths add up to the period of the IR. The IR frequency is further illustrated by plotting a corresponding oscillation over the example waveform
of each condition. Note that the y axes do not contain tick labels because they represent arbitrary numbers between 0 and 1.

the visual and auditory domains. Based on the assumption that this cor-
relation would indicate a shared cognitive resource, we hypothesized
that higher ITPC would also be associated with better interrupted sen-
tence understanding in the visual domain. In this case, ITPC would re-
flect recruitment of a domain-general cognitive resource rather than an
exclusively auditory mechanism. Previous studies of interrupted speech
understanding have shown considerable inter-individual differences in
the percentage of understood words, although the interruption param-
eters were the same (Bologna et al., 2018; Wang and Humes, 2010).
One can therefore consider the percentage of understood words as an
indicator of the individual difficulty of the task for each participant. We
hypothesized that task performance would be positively related to ITPC
because it reflects how well a participant can engage repair mechanisms.

2. Materials and methods
2.1. Participants
The sample consisted of 26 older adults (mean age = 69.5 yrs,

S D = 3.8 yrs, range 64-75 yrs, 13 females). One additional participant
was tested but excluded from the final analysis because of floor behav-

ioral scores. All participants were right-handed as assessed by the Annett
Hand Preference Questionnaire (Annett, 1970) and reported no past or
present psychiatric or neurological disorders. Their native language was
Swiss German and none had learnt another language before the age of
seven. None wore a hearing aid nor reported having tinnitus. Their av-
erage hearing thresholds in the frequencies 0.5, 1, 2, and 4 kHz did
not exceed 30 dB HL. They also stated that their hearing ability did not
differ between the two ears. To only include participants not affected
by mild cognitive impairment or dementia, participants were asked to
completed the Montreal Cognitive Assessment (Nasreddine et al., 2005)
and were only invited to participate in the study if they had scored 26
points or more. The ethics committee of the Canton of Zurich approved
the study (application no. 2017-00284). Written informed consent was
obtained from all participants. Participants were compensated for their
participation.

2.2. Hearing tests

The computer-based hearing tests were administered via a custom
MATLAB software built on the MAP auditory toolbox (Meddis et al.,
2013). We measured absolute pure-tone hearing thresholds in the fre-
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Fig. 2. Hearing thresholds.Note. Hearing thresholds for each participant (gray
lines) and the group mean (black line) at all tested frequencies. In three partic-
ipants, the 8 kHz tone was not audible at the maximum level of presentation
(80 dB HL).

quencies 0.5, 1, 2, 4, and 8 kHz. The measurement procedure and the
stimuli have already been described in detail elsewhere (Giroud et al.,
2018; Lecluyse and Meddis, 2009; Lecluyse et al., 2013). Participants’
pure-tone hearing thresholds are visualized in Fig. 2. The average ab-
solute hearing threshold (i.e., pure-tone average; PTA) for each par-
ticipant was calculated by averaging the thresholds for 0.5, 1, 2, and
4 kHz. Stimuli were controlled via sound card (RME Babyface Pro, RME,
Haimhausen, Germany) and presented via loudspeaker with linear fre-
quency response (8030B Studio Monitor, Genelec, Iisalmi, Finland). We
used a head supporting device (SR Research Head Support, SR Research,
Ottawa, Ontario, Canada) to ensure that each participant sat at the same
distance from the loudspeaker. The distance between the center of the
loudspeaker and participants’ ears was 65 cm. The stimulus level was
calibrated with a sound level meter (XL2, NTi Audio, Schaan, Liechten-
stein).

2.3. Visual linguistic closure

To assess visual linguistic closure, we used the Text Reception
Threshold Test (TRT; Zekveld et al., 2007). This test was developed and
has been used as a visual equivalent to the Speech Reception Thresh-
old test (SRT). In our view, the TRT shows at least as many similarities
with the interrupted speech paradigm as with the SRT and, indeed, the
TRT has already been used as a visual analogue of interrupted speech
(Krull et al., 2013). Both the TRT and the interrupted speech paradigm
mask only a certain proportion of the whole language stimulus (the TRT
with black bars, the interrupted speech paradigm with silence), while
the SRT typically masks the whole stimulus. We administered the TRT
in the TRTy, o rp Version (Besser et al., 2012) because the original TRT
presents all the words of the visual stimuli sentence at the same time.
Due to the inherently temporal nature of acoustics, only one chunk
can be presented at a specific point in time. We therefore judged the
T RTy orp version, in which each word is presented and then disap-
pears before the next word is presented, as better corresponding to the
interrupted speech paradigm.

During testing, participants sat in the EEG cabin with a microphone
in front of them. In total, 30 sentences (10 practice trials, 20 test trials)
taken from test list number 4 of the German matrix sentence test Old-
enburger Satztest (OLSA; Wagener et al., 1999) were presented on the
computer screen, masked by black bars. The practice trials served two
purposes: We ensured that the participants understood the test proce-
dure, and we also ensured that they had adequate vision for the test. For
a more detailed description of the T RTy, orp, See Besser et al. (2012).
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Table 1
Experimental conditions .
Silent interval length Duty cycle
3
H 0.5 0.6
100 ms 100 ms : 75 ms 100 ms : 100 ms 100 ms : 150 ms
(IR 5.7 Hz) (IR 5 Hz) (IR 4 Hz)
50 ms 50 ms : 50 ms
(IR 10 Hz)

Note. This table shows the four experimental conditions. In each cell, the
lengths of the silent intervals and the sound segments are contrasted with
the colon. The sum of these two values represents the period of the respective
IR, which is noted in the parentheses below in Hertz.

2.4. Stimuli for EEG experiment

The stimuli for the EEG experiment consisted of spoken sentence ma-
terial (Swiss German) with silent intervals inserted. In total, the main
EEG experiment required 123 sentence stimuli. The sentences were
recorded by a female native speaker of Swiss German and were nor-
malized to 70 dB SPL (mean FO = 226.81 Hz, SD = 11.69 Hz; mean
duration = 3.9 s, SD = 0.35 s). The sentences contained topics related
to everyday life in Switzerland. The 123 sentences were assigned to four
experimental conditions (30 sentences per condition) and a practice con-
dition (3 sentences).

To create the stimuli for the conditions, the audio signal of the sen-
tences was partially set to zero. This manipulation was performed after
normalization to 70 dB SPL so that the audible segments in each sen-
tence would be presented with the same intensity on average. Our con-
ditions followed an incomplete 2 (Length of silent interval) x 3 (Duty
cycle) within-subjects design. Please see Table 1 for an overview of the
experimental conditions and Fig. 1 for a visualization of the stimuli and
the corresponding IRs. In three of the four conditions, the silent interval
that masked the sentences was 100 ms long. The duty cycle took val-
ues of 3, 0.5, and 0.6, which resulted in non-masked speech segments
of 75 ms, 100 ms, and 150 ms, respectively. Therefore, the sentences
in these three conditions were interrupted at rates of 4 Hz, 5 Hz, and
5.7 Hz. The fourth condition had a silent interval of 50 ms and a duty
cycle of 0.5, which resulted in non-masked speech segments of 50 ms
and an IR of 10 Hz.

In the following, the four conditions will be referred to as “050_050”,
“100.100”, “100_075”, and “100_150”. These numbers refer to the
lengths of the silent intervals and non-masked speech segments in each
condition. Stimuli were presented block-wise.

2.5. EEG Experiment: sentence repetition task

For the EEG experiment, participants were seated in an EEG cabin in
front of a computer screen and a microphone. After a short instruction
in which they could see the effects of their movement on the EEG signal,
they were asked to keep as still as possible in the experiment. Then, the
procedure for the main EEG task was explained to them. Their task was
to repeat as much as possible of the whole sentence heard into the mi-
crophone, without gaps. They completed a short practice block and then
four experimental blocks in total, each of which required approximately
12 min. After the practice session, participants were actively encouraged
to adjust the presentation volume of the stimuli (i.e., louder or softer)
to ensure optimal audibility for that individual. If participants refused
initially, we asked them a second time to make sure they were not just
polite. If they refused a second time, we kept the volume at 70 dB SPL.
If they asked for an increase, we increased the volume in steps of 1 dB
SPL. When participants were comfortable with the volume, it was kept
at the resulting sound level for the rest of the experiment. We recorded
the dB increases for each participants. Except for the first trial of each
block, the experimenter controlled the start of the trials. Participants’
recorded responses were scored according to the number of words they
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correctly repeated. In the case of compound nouns, each compound was
scored individually. No feedback was provided during the experiment.
Participants’ answers were aggregated over each block by calculating
the ratio between the number of correctly repeated words and the total
number of words. Consequently, each participant’s score in each block
of the sentence repetition task could range between 0 and 1. This score
was used as a measure for individual task difficulty. After each block,
participants had a 1-min break. Block order was counterbalanced be-
tween participants, but stimulus order within the blocks was fixed to
facilitate the evaluation of participants’ responses.

2.6. EEG recording and analysis

Participants’ EEG was recorded continuously from 128 Ag/AgCl elec-
trodes (BioSemi ActiveTwo, Amsterdam, The Netherlands) with an Ac-
tiveTwo AD-box amplifier system (BioSemi ActiveTwo, Amsterdam, The
Netherlands) and was digitized at a sampling rate of 512 Hz. Data were
online band-pass filtered between 0.1 and 100 Hz and impedances were
reduced to below 25 kQ. Data were analyzed in MATLAB Release 2016b
(The MathWorks, Inc., Natick, Massachusetts, United States) using the
FieldTrip Toolbox (Oostenveld et al., 2011). For pre-processing, data
were re-referenced to Cz and then band-pass filtered between 0.1 and
40 Hz with a non-causal zero-phase two-pass 4th (8th) order Butter-
worth IIR filter with —6 (-12) dB half-amplitude cutoff. A non-causal
zero-phase two-pass 4th (8th) order Butterworth IIR band-stop filter
with —6 (—12) dB half-amplitude cutoff was applied between 48 and
52 Hz in order to eliminate artifacts resulting from electric interference.
Then, data were visually screened for noisy channels, which were then
removed. To follow, the continuous EEG was segmented into trials start-
ing 2 s before sentence onset and lasting until the end of the sentence
(mean trial duration = 5.9's, SD = 0.35 s). Trials containing gross arti-
facts (i.e., containing large, non-systematic spikes in the EEG related to
muscular activity as a result of movement or coughing) were removed
manually. The data were then re-referenced to an average reference and
an independent component analysis (ICA) was applied to remove eye
movements and eye blinks (Jung et al., 2000). After this, the noisy chan-
nels were interpolated using spline interpolation (Perrin et al., 1987).

2.7. ITPC

To extract ITPC, a time-frequency analysis was conducted using Mor-
let wavelets with 7 cycles in frequencies from 3 to 18 Hz and in a time
window between —2 and 3 s, with a step size of 10/512 ms. In order
to achieve a frequency resolution of 0.1 Hz (which was necessary to
obtain phase values for one of our IR frequencies, 5.7 Hz), data were
zero-padded until 10 s. The outputs of the wavelet analysis were com-
plex Fourier-spectra.

From these complex Fourier-spectra, ITPC was calculated using the
following formula (adapted from Delorme and Makeig, 2004):

Fk,/’,r,c

n
1
ITPCy. = - ,;

in which » is the number of trials and F, /. is the complex Fourier-
spectrum of trial k at frequency f and time ¢ at channel c.

For each channel, ITPC values in each of the four interruption rates
were averaged across the time window between 1 and 2 s after stimulus
onset and were afterwards exported to a.csv file for further statistical
analysis. Fig. 3 shows the topographies of ITPC values during this time
window (upper row) and the time-frequency representation of ITPC in
each condition (lower row). The lower bound of this time window of
analysis was chosen in order to exclude phase-locking due to the N1-P2
complex after stimulus onset (the yellow blobs at stimulus onset visible
in Fig. 3). Because FieldTrip clips the complex Fourier-spectra at half
the length of the Gaussian taper of the wavelet, our maximum window
of analysis would have lasted until 2.127 s after stimulus onset (i.e., the
last time point for which the complex Fourier-spectrum was computed

|Fk,f,l,c|
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at 4 Hz). For reasons of simplicity and readability, we chose to restrict
the analysis to 2 s after stimulus onset.

Furthermore, in order to reduce the levels of the channel dimension
of the EEG data while still remaining free of assumptions regarding the
topography of our effects to avoid ‘double dipping’ (Kriegeskorte et al.,
2009), channels were grouped together so that they formed nine clusters
(left anterior, left central, left posterior, medial anterior, medial central,
medial posterior, right anterior, right central, and right posterior). Clus-
ter sizes were chosen so that all clusters would contain approximately
the same number of electrodes. ITPC for each cluster was calculated by
averaging across all channels of each cluster. This cluster-based LMEM
analysis was favored instead of cluster-based permutation tests because
it requires far less compute resources while still retaining the notion of
no preconceptions about regions with significant effects.

2.8. Statistical analysis

Statistical tests were conducted in R, Version 3.6.2 (R Core
Team, 2018) and FieldTrip, Version 20190419 (Oostenveld et al., 2011).
We derived the p values for estimates in linear mixed-effects models
(LMEM) using the Satterthwaite method implemented in the R package
ImerTest (Kuznetsova et al., 2017).

3. Results
3.1. Behavioral results

We first investigated the behavioral results of our interrupted speech
experiment. A LMEM was run to analyze differences in sentence repeti-
tion scores between the four experimental conditions. The model con-
tained a fixed effect for condition and a random intercept per partic-
ipant. As condition was a dummy-coded categorical variable with the
050_050 condition as the reference category, this resulted in three cat-
egorical predictors. All three condition predictors were significant (all
p < 0.001). Post-hoc Tukey t-tests were conducted with the glht func-
tion of the multcomp package (Hothorn et al., 2008). All pairwise com-
parisons were significant (all p < 0.001). Please see Fig. 4 for a visual-
ization of sentence repetition scores. Participants scored highest in the
050_050 condition (M = 0.811, SD = 0.083), followed by the 100_150
condition (M = 0.681, SD = 0.121), the 100_100 condition (M = 0.461,
SD =0.137), and the 100_075 condition (M = 0.34, SD = 0.133). The
significant difference between conditions 050_050 and 100_150 shows
that with regard to these specific conditions, the length of the silent in-
terval outweighs the duty cycle. However, taking into account only the
duty cycle with a fixed silent interval length, a monotonic pattern of
increasing understanding with increasing amount of signal is observed.

3.2. Predicting sentence repetition scores from participant variables

As a next step, we investigated whether our participant-level vari-
ables (age, PTA, and TRT) would predict sentence repetition scores. To
achieve this, we updated the previous LMEM, which predicted sentence
repetition scores from condition, to include age, PTA, and TRT. Of the
three participant-level variables, only PTA was predictive of sentence
repetition scores (b = —0.008, #(22) = —3.15, p = 0.005). Because partic-
ipants were encouraged to amplify or attenuate stimulus presentation,
and because they had been able to work on the practice trials, we en-
sured that all participants were able to perceive the stimuli. Participants’
final sound level after amplification and PTA were correlated (Pearson’s
r=0.493, p=0.01). We therefore assume that the participant-led vol-
ume increases were performed in accordance with their hearing ability.
However, it is possible that some participants did not amplify the stim-
uli sufficiently. In this case, PTA would be predictive of sentence repe-
tition scores not because of a genuine relationship between peripheral
hearing ability and task performance, but simply because of audibil-
ity issues. As control variable for this possible confounding factor, we
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Fig. 3. ITPC topographies and time-frequency representations.Note. This figure shows topographies and time-frequency representations of ITPC for all four conditions.
Upper row: Topographies of ITPC for the four conditions averaged across a time window of 1 and 2 s after sentence onset. Lower row: Time-frequency representations
of ITPC in the medial central electrode cluster for the four conditions. The four IR frequencies are marked with horizontal lines. For each condition, the corresponding
IR frequency is colored black, while the IR frequencies of the other conditions are colored red. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 4. Behavioral results.Note. This figure shows the distributions of sentence
repetition scores for each condition. Single dots show individual data points, the
box-and-whiskers plots show the median (thick line within the box), the inter-
quartile range (IQR; the length of the box), the first (Q1) and the third (Q3)
quartiles (left and right bounds of the box), Q1 — 1.5 * IQR (end of left whisker),
and Q3 + 1.5 * IQR (end of right whisker). The distribution visualizations above
show the kernel density estimation. Participants scored highest in the 050_050
condition, followed by the 100_150 condition, the 100_100 condition, and the
100_075 condition.

calculated residual attenuation (rAtt) by extracting and standardizing
the residuals of the regression of attenuation on PTA. We then fitted a
LMEM with condition, PTA and rAtt as predictors for sentence repeti-
tion scores. Even with this additional control variable, PTA remained a
significant predictor (b = —0.008, #(23) = —3.434, p = 0.002) for sentence
repetition scores. This finding suggests that raised peripheral hearing

thresholds have an effect on speech understanding which cannot sim-
ply be reversed via amplification. The relationship between condition,
sentence repetition scores, and PTA is visualized in Figure S1.

3.3. ITPC by condition

We then investigated whether the stimuli elicited speech tracking in
their specific IR frequency. Four data sets were created, one for each
IR frequency (4, 5, 5.7, and 10 Hz), containing ITPC values in all con-
ditions at that frequency. For each data set, ITPC values were included
in a LMEM with condition, cluster, and trial count as fixed effects and
with a random intercept for participant. For each model, the reference
category of that predictor condition was chosen to match the respec-
tive IR frequency, so that ITPC in that frequency would be compared
to the remaining conditions (e.g., for the 5 Hz data set, the reference
condition was 100_100). We thus expected negative values for the con-
dition estimates as these would indicate less ITPC in the conditions for
which this frequency was not the IR frequency. Trial count per condition
and participant was added to the analyses as a control variable because
ITPC is directly related to the number of trials that are used to calculate
it (Vinck et al., 2010). All clusters were included in the analysis in or-
der to obtain an assumption-free estimate of how the effect of condition
was distributed across the scalp, and to identify loci of especially strong
ITPC on the topography without relying on visual inspection. The fac-
tor cluster was encoded via sum coding. For concision, we only present
main effects here. A significant negative main effect of any condition
points to significantly lower ITPC in that condition compared to the ref-
erence condition. Table S1 shows full model estimates including cluster
interactions.

For the IR frequency of 4 Hz, ITPC was lower in all three tested con-
ditions relative to the reference condition, 100_150 (050_050, b = —0.06,
1(875.96) = —17.48, p < 0.001; 100_075: b = —0.06, #(879.25) = —17.59, p <
0.001; 100_100: b = —0.06, #(874.41) = —17.860, p < 0.001). For the IR fre-
quency of 5 Hz, ITPC was lower in all three tested conditions relative
to the reference condition, 100_100 (050_050: b = —0.08, #(876.23) =
—22.21, p<0.001; 100_075: b= —0.04, #(879.36) = —10.88, p < 0.001;
100_150: b = —0.07, #(874.28) = 20.01, p < 0.001). For the IR frequency
of 5.7 Hz, ITPC was lower in all three tested conditions relative to the
reference condition, 100_075 (050_050: b = —0.09, #(875.03) = —25.92,
p <0.001; 100_100: b = —0.05, #(879.29) = —13.36, p < 0.001; 100_150:
b= -0.09, 1(878.29) = —25.59, p < 0.001). For the IR frequency of 10 Hz,
ITPC was lower in the 100_075 and in the 100_150 conditions rela-
tive to the reference condition, 050_050 (100_075: b = —0.01, #(874.49) =
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Fig. 5. Distribution of ITPC per cluster and condition.Note. This figure shows the distributions of ITPC for each condition in each cluster averaged across IR
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—4.40, p < 0.001; 100_100: b = 0.00, #(876.06) = 1.23, p = 0.22; 100_150:
b= —-0.01, #(875.20) = —3.33, p < 0.001). This shows that in the three con-
ditions with a silent interval length of 100 ms, ITPC was significantly
higher in the IR corresponding to that specific condition than in all other
tested frequencies. In the 050_050 condition, this mostly holds true, al-
beit with estimates that are much smaller than for the other compar-
isons. Therefore, we show that speech tracking is highly specific to the
IR of the stimulus. Fig. 5 illustrates the distributions of ITPC in the four
IR frequencies per condition at each cluster. Fig. 6 shows the distribu-
tions of each measured ITPC frequency averaged across clusters, depen-
dent on whether the ITPC frequency corresponded to the condition’s
interruption rate.

3.4. Inter-individual variation in ITPC

We further aimed to explain inter-individual variation in ITPC. We
were interested in whether age, peripheral hearing, and visual linguis-
tic closure would predict the amount of ITPC in the IR frequencies.
Furthermore, we aimed to include a measure of how challenged par-
ticipants were by a specific condition. To this end, we used partici-
pants’ sentence repetition score in each condition as a proxy for in-
dividual task difficulty. To explain inter-individual variation in ITPC,
we fitted a LMEM with ITPC as criterion and all four participant vari-
ables (age, PTA, TRT, individual task difficulty) as predictors in ad-

dition to the control variables (trial count and residual attenuation),
and a random intercept per participant. Because individual task dif-
ficulty strongly depended on the experimental condition, we also in-
cluded main effects of condition and interaction effects of condition
with individual task difficulty to the model. After initial model fitting,
the assumption of normally distributed errors was not met. We there-
fore log-transformed ITPC, which resulted in normally distributed er-
rors. Of the four participant-related predictors, only individual task dif-
ficulty (b = -0.62, 1(595.07) = —2.96, p = 0.003) significantly predicted
ITPC. Because the factor “condition” was dummy-coded, with the ref-
erence condition being the 050_050 condition, this negative coefficient
indicates that in the condition with an IR of 10 Hz, lower individual
task difficulty (= better performance) resulted in less ITPC. Addition-
ally, all interaction effects between individual task difficulty and con-
dition were significant (condition 100_075: b = 0.379, #(922.37) = 1.98,
p = 0.048; condition 100_100: b = 0.593, #(922.99) = 3.17, p = 0.002; con-
dition 100_150: b = 0.525, 1(921.49) = 2.74, p = 0.006). These positive in-
teraction coefficients reveal a positive relationship between sentence
repetition scores and ITPC in these conditions. Higher sentence repeti-
tion scores, which represent lower individual task difficulty, were re-
lated to more ITPC. To better illustrate this finding, the relationship
between individual task difficulty and ITPC in each condition at each
electrode cluster is visualized in Fig. 7. Also, the two control variables
trial count (b = —0.02, #(799.98) = —4.93, p < 0.001) and residual atten-
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Fig. 6. ITPC in the IRs of all conditions.Note. This figure shows the distributions of each measured ITPC frequency averaged across clusters, dependent on whether

the ITPC frequency corresponded to the condition’s interruption rate.

uation (b = 0.054, #(21.32) = 2.35, p = 0.03) significantly predicted ITPC.
This result confirms the importance of controlling for the number of
trials that were used to calculate ITPC, and it also suggests that even
small changes in audibility of the acoustic stimuli influences speech
tracking.

There is, however, an alternative explanation for the significant ef-
fect of individual task difficulty. For the three conditions with a silent
period of 100 ms, a higher difficulty goes hand in hand with a higher
number of sound onsets in the acoustic signal. Since speech tracking is
thought to be elicited by the presence of sharp edges in the acoustic
signal, it is possible that not difficulty, but rather the number of sound
onsets in the stimuli is reflected in higher ITPC. Therefore, an alterna-
tive explanation of the association between difficulty and ITPC could
be that ITPC was solely elicited by the summation of cortical evoked
potentials (P1-N1-P2), which were phase-locked to the onset of the sen-
tence as well as to the onsets of every single sound snippet after each
silent period. This issue cannot be resolved by simply controlling for
the number of sound onsets because there is no variation in the num-
ber of sound onsets between the conditions. Thus, entering both vari-
ables into the model would result in a rank-deficient model matrix. We
therefore chose to compare models with either difficulty or number of

sound onsets as fixed effects of interest but, because the two models
were not nested, it was not possible to conduct a likelihood ratio test
to test for a significantly better fit of one model compared to the other.
However, it was still possible to compare the two models by means of
the Akaike Information Criterion (AIC). We decided on AIC as compari-
son criterion because it is the most appropriate information criterion for
comparing models when the “true model” is not part of the model en-
semble (Vrieze, 2012). The models fitted for comparison were a LMEM
predicting log-transformed ITPC with individual task difficulty and a
random intercept per participant and one predicting log-transformed
ITPC with the number of sound onsets and a random intercept per par-
ticipant. Both models were fitted using Maximum Likelihood variance
estimation. The model with individual task difficulty as predictor for
ITPC exhibited a lower AIC (—257.16) than the model with number of
sound onsets (AIC = —180.38). As a rule of thumb, an absolute difference
of 10 between two models strongly favors the model with the smaller
AIC (Posada and Buckley, 2004). In our case, the absolute difference
between the two models’ AICs was 76.78, thereby strongly favoring the
difficulty model. We therefore concluded that ITPC was not higher in
the more difficult conditions simply because of the co-occurrence of a
higher number of sound onsets.
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We also conducted an analysis on whether the pattern of increasing
ITPC in increasingly difficult conditions was related to PTA. This analy-
sis was suggested by a helpful reviewer. First, we visually analyzed the
relationship between condition, PTA, and ITPC at each cluster by plot-
ting each participant’s ITPC per cluster and condition, with the condi-
tions ranked for difficulty, and with connecting each participant’s ITPC
values with a line whose color represents their PTA (Figure S2). In this
visualization, we observed the rising ITPC in more difficult conditions,
which we already displayed as an average across participants in the to-
pographical maps in Fig. 3. Visually, it was not obvious whether this
pattern differed as a function of PTA. To statistically test this hypoth-
esis, we first fitted linear models to the data points of each participant
and each cluster. In other words, we approximated the plotted lines in
Figure S2 by means of linear modeling. The purpose of this fitting was to
approximate the degree to which ITPC increased for each participant in
each cluster as a function of condition difficulty. To obtain these values,
continuous values for condition difficulty were necessary, for which we
took the mean difficulty over all participants as a proxy. The estimates
for the coefficients of condition difficulty (i.e., the slopes of the linear
models) were extracted and subjected to a LMEM with the slopes as cri-
terion, PTA as a fixed effect, and random intercepts for participant and
cluster. PTA was not predictive of the fitted slopes (b = 0, #(24) = —0.27,
p = 0.808). We therefore did not find any evidence that the pattern of
ITPC increasing as a function of condition difficulty was related to pe-
ripheral hearing. The relationship between PTA and slopes is visualized
in Figure S3.

4. Discussion

This study investigated neural tracking of interrupted speech in
healthy older adults with age-typical hearing. Specifically, we inves-
tigated whether neural speech tracking in the IRs of the interrupted
speech signal would take place and if so, whether neural speech
tracking could be expressed as a function of hearing and cognitive
ability.

0.25 0.50 0.75

10

4.1. Repetition of interrupted speech

Our behavioral results complimented previous findings (Miller and
Licklider, 1950; Wang and Humes, 2010) showing that the length of the
silent interval is a key variable for successful understanding, in addition
to duty cycle and IR. Participants scored highest in the 050_050 con-
dition, although the duty cycle was higher in the 100_150 condition.
However, taking into account only the duty cycle by keeping the length
of the silent interval fixed at 100 ms, we observed a monotonic pattern
of increasing understanding with increasing amount of signal as partici-
pants scored highest in the 100_150 condition, followed by the 100_100
condition and the 100_075 condition.

In a sample of older adults with normal hearing, we found that hear-
ing thresholds were predictive of sentence repetition scores even when
controlling for residual attenuation differences. We did not expect this
result because our sample exhibited normal-for-age audiograms. How-
ever, because including residual attenuation differences did not remove
PTA as a significant predictor, this finding indicates that raised pure-
tone hearing thresholds can result in speech understanding difficulties
than cannot be attributed to loudness (see also Lesica, 2018).

It was also one of our goals to ascertain whether visual linguis-
tic closure would predict interrupted speech understanding (as in
Bologna et al., 2018) and neural speech tracking. If it did, this would
provide evidence for the involvement of a domain-general cognitive re-
source in the repair of the missing speech input. However, visual linguis-
tic closure did not significantly predict the understanding of interrupted
speech. This replicates the same null finding from Krull et al. (2013),
who did not find such an association in their older participant group
(but did find it in their younger participant group).

A possible explanation as to why we did not find an involvement of
a domain-general cognitive resource in our study is that our paradigm
may have been insufficient to trigger restoration of the missing speech
signal. Top-down restoration of speech is often measured via the phone-
mic restoration paradigm (Saija et al., 2014). The term phonemic restora-
tion in these studies refers to the difference in understanding speech in-
terrupted by silence and speech interrupted by noise, the latter case be-
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ing associated with better understanding, usually. The presence of noise
is presumed to trigger restorative processes while the silence does not,
or at least not as strongly.

Even though phonemic restoration is considered a cognitive process,
studies that use cognitive tests to predict the extent of the phonemic
restoration benefit are surprisingly rare. In a paradigm similar to ours,
Jaekel et al. (2018) presented older adults with normal hearing stimuli
interrupted by silence (their silent interval duration was 200 ms gaps,
with a duty cycle of 0.5). They did not find effects of working memory
or linguistic skills on sentence repetition. Bologna et al. (2018) found
that visual linguistic closure actually predicted sentence repetition in
speech interrupted by silence, but not speech interrupted by noise. In
our study, the results for visual linguistic closure did not support the
finding of Bologna et al. (2018) as we did not find a relationship be-
tween the current T RTy,orp Version and the understanding of speech
interrupted by silence. To further illustrate the relationship between the
understanding of interrupted speech, visual linguistic closure and the
type of interruption (silence vs. noise), it would be interesting to inves-
tigate speech tracking and cognition in relation to speech interrupted
by noise as a potential trigger of cognitive restoration mechanisms.

4.2. Neural speech tracking of interrupted speech

We expected that the presentation of a speech signal interrupted
by silence would elicit speech tracking in the specific IR frequency.
We found significant main effects of condition when comparing speech
tracking in the IR with speech tracking in the IRs of the other conditions,
except when comparing speech tracking at 10 Hz between the 050_050
and 100_100 conditions. It is possible that this exception occurred be-
cause 10 Hz is a harmonic of 5 Hz, which was the IR of the 100_100
condition. Taking this into account, we argue that speech tracking in
the IR occurred in all conditions. Speech tracking spanned across the
scalp, as evidenced by significant main effects of condition, but it oc-
curred most prominently in a medial, and, to a lesser degree, posterior
central, a right posterior and a left posterior electrode cluster (see Table
S1 and Fig. 5).

First, this result shows that healthy older adults’ brains are suscepti-
ble to speech tracking, extending the results of Herrmann et al. (2019).
To our best knowledge, we are the first to show that this speech tracking
of natural interrupted speech occurs in healthy older adults and that it
is highly sensitive even to small differences in frequency. Our 100_100
and 100_075 conditions had IR frequencies of 5 and 5.7 Hz, respectively,
and even this small difference of 0.7 Hz could be reliably discriminated.

Nevertheless, comparing the 050_050 condition to the other condi-
tions on speech tracking at the 10 Hz frequency yielded considerably
smaller effects than the other comparisons. In other words, we found
speech tracking a lot stronger in IR frequencies in the theta band (3-
8 Hz), and a lot weaker in the alpha band (8-12 Hz). Two studies (Teng
and Poeppel, 2019; Teng et al., 2017) recorded the magnetencephalo-
gram of participants listening to sounds modulated at theta, alpha, and
gamma frequencies, and found speech tracking only for the theta- and
gamma- modulated sounds, but not (Teng et al., 2017) or only to a lesser
extent (Teng and Poeppel, 2019) for the alpha- modulated sounds. It is
possible that our 050_050 condition with the IR frequency of 10 Hz did
not elicit speech tracking to the same extent because the alpha band is
not as sensitive to speech tracking as the theta band. Another explana-
tion is that the 050_050 condition was simply too easy, so that strong
speech tracking was not necessary to understand the stimuli.

In an auditory frequency-tagging study with young adults, Weisz and
Lithari (2017) compared ITPC in response to amplitude-modulated
sounds in different modulation rates. They found that ITPC in response
to 4 Hz amplitude modulated sounds was stronger than ITPC in response
to 10 Hz amplitude modulated sounds. Given the similarity between the
interrupted speech paradigm and the frequency-tagging paradigm, their
results concur with ours: We found stronger ITPC in the conditions with
an IR of 4, 5, or 5.7 Hz in comparison with an IR of 10 Hz. Additionally,
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we found evidence for a functional property of this neural response: Cor-
rectly repeating the interrupted sentences was related positively to ITPC
in the conditions with IRs of 4, 5 and 5.7 Hz, and negatively related to
ITPC in the condition with an IR of 10 Hz. We discuss this finding further
below.

There is another possible explanation for the lowest ITPC values in
the 050_050 condition. Assuming that evoked response amplitudes un-
derlie ITPC, the faster IR rate and, correspondingly, the shorter dura-
tion of silence, might have resulted in smaller evoked response am-
plitudes simply due to neuronal refractoriness. However, in our view,
there are two points that speak against this explanation. First, the
frequency-tagging study by Weisz and Lithari (2017) demonstrated a
nonlinear relationship between IR frequency and ITPC. ITPC in response
to 4 Hz amplitude modulated sounds was stronger than ITPC in re-
sponse to 10 Hz amplitude modulated sounds, but the ITPC response
was by far the strongest to 40 Hz modulated sounds. If ITPC strength
was directly related to neural refractoriness, the results of Weisz and
Lithari (2017) should have demonstrated a monotonously decreasing
relationship between modulation rate and ITPC. Second, assuming a
monotonous increase in evoked response amplitudes as a function of IR,
4 Hz should have the strongest overall response, followed by 5 Hz and
then by 5.7 Hz. However, the data show a reverse pattern for the three
conditions with these IRs: In the 100_150 condition (IR: 4 Hz), ITPC is
lower than in the 100_100 condition (IR: 5 Hz), which in turn is lower
than ITPC in the 100_075 condition (IR: 5.7 Hz). We therefore conclude
that ITPC values in the 050_050 condition were not lowest because of
neural refractoriness.

4.3. Inter-individual differences in neural speech tracking of interrupted
speech

Speech tracking in the specific IR of each condition showed consider-
able inter-individual variability (ITPC ranging between 0.11 and 0.55).
This noticeable inter-individual variability in speech tracking is a com-
mon finding (Lam et al., 2018). In our study, one of our aims was to
investigate possible sources of this variability.

We did not find evidence that higher hearing thresholds would be
associated with less speech tracking. This is in line with our expecta-
tions, because our sample consisted of older adults with normal-for-age
audiograms. Also, previous studies have presented evidence that hear-
ing thresholds are related to speech tracking in a more subtle way than
a direct correlation (Petersen et al., 2017; Presacco et al., 2019).

In our study, we measured visual linguistic closure in order to ap-
proach a domain-general cognitive mechanism which would contribute
to repairing the missing language input. However, in addition to not
predicting sentence repetition scores, visual linguistic closure did also
not predict speech tracking. It is possible that we did not target the rele-
vant variable. For example, as a measure of cognitive capacity, working
memory span assessed via the reading span task (Daneman and Car-
penter, 1980) has been more promising in cognitive hearing science
(Arlinger et al., 2009).

We were also interested in whether ITPC would be modulated by
task difficulty. To approximate a measure of (individual) task difficulty,
we took the sentence repetition scores as a proxy, because it gives
us a measure of how challenged a participant was in the task. In the
100_150, 100_100, and 100_075 conditions, speech tracking increased
as individual task difficulty decreased (i.e., as sentence repetition perfor-
mance increased). In the 050_050 condition however, speech tracking
decreased as individual task difficulty decreased (i.e., as sentence repe-
tition performance increased). This result can be explained in a frame-
work outlining the functional roles of different frequency bands for cor-
tical speech processing (Giraud and Poeppel, 2012). The IRs of 4, 5,
and 5.7 Hz correspond to the theta frequency band of EEG frequencies
(e.g., Ghitza, 2011). In these conditions, we had fixed the silent inter-
val length to 100 ms, which is approximately the median length of a
syllable (Greenberg et al., 2003). Possibly, ITPC in theta-range frequen-
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cies was positively related to the ability to reproduce the interrupted
sentence because in the relevant conditions, higher ITPC allowed a bet-
ter capturing of the syllable chunks that were actually present in the
interrupted speech signal. The alpha frequency band, which includes
10 Hz, is prominently involved in cognitive abilities like attention and
working memory (e.g., Klimesch, 2012; Klimesch et al., 1993); abilities,
which are also relevant during speech perception in adverse listening
conditions (Obleser et al., 2012). However, the alpha band appears less
relevant in the context of basic speech processing (e.g., Teng and Poep-
pel, 2019), which might also be reflected in the weaker neural response
to amplitude modulated sounds in 10 Hz compared to 4 Hz (Weisz and
Lithari, 2017). Thus, stronger ITPC in the condition with the IR of 10 Hz
might not be beneficial, but rather detrimental during a speech process-
ing task, as our results suggest.

Interestingly, auditory frequency-tagging studies usually find the
strongest neural response to amplitude modulated sounds with a modu-
lation rate of 40 Hz (Galambos et al., 1981; Ross et al., 2005; Weisz and
Lithari, 2017). In future studies, it would be interesting to also add a
condition with a 40 Hz IR. However, this condition would be extremely
easy to understand and it we would only expect behavioral variabil-
ity in a specially selected stimulus set, where missing speech chunks of
12.5 ms (in a condition with a 40 Hz IR and a duty cycle of 0.5) actually
introduce ambiguity.

It is worth noting that neural responses to sounds that are amplitude
modulated in all of the mentioned frequencies (from 4 Hz to 40 Hz)
seem to be preserved in older adults (Boettcher et al., 2001; Grose et al.,
2009), in comparison to higher frequencies (Grose et al., 2009; Leigh-
Paffenroth and Fowler, 2006).

We further explored the possibility of ITPC in the IR frequencies be-
ing observed only because of phase reset concurring with early cortical
evoked potentials at every new sound segment. However, if this were
true, (1) ITPC in the 10 Hz frequency in the 050_050 condition should
be of similar size as in the other conditions, and (2) ITPC would have
been better accounted for as a function of the number of sound onsets
rather than a function of difficulty.

Regarding the first point, we have already discussed the difference
in effect magnitudes between the 050_050 and the other conditions. Re-
garding the second point, a model predicting ITPC as a function of dif-
ficulty yielded a lower AIC than a model predicting ITPC as a function
of the number of sound onsets. Clearly, this does not exclude the pos-
sibility that the ITPC signal did not partly stem from a summation of
evoked potentials. Even so, a study by Doelling et al. (2019) found that
an oscillator model better predicted neural tracking of rhythmic musi-
cal stimuli than an evoked responses model, even when the music notes
contained sharp attacks, which should have fostered evoked responses.

To summarize, we showed that speech tracking in the IR occurs in
healthy older adults, and that stronger speech tracking in the theta fre-
quency band is related to better understanding of interrupted speech.
Because hearing aids currently constitute the only evidence-based treat-
ment for age-related hearing loss, there is a lack of treatments for hear-
ing problems that do not arise out of audibility issues, but rather out of
intelligibility issues. The sensitivity of speech tracking to the difficulty of
a listening situation could qualify it as a mechanism which could possi-
bly be trained or excited via brain stimulation methods such as transcra-
nial alternating current stimulation (Riecke et al., 2015; Rufener et al.,
2016; Zoefel et al., 2018) in order to improve speech understanding in
older adults with hearing loss. Other studies have used acoustic stimu-
lation to drive entrainment of known intrinsic cortical rhythms in other
cognitive functions such as sleep (Lafon et al., 2017). This form of ther-
apy would, however, be grounded on the conception that the mechanism
underlying speech tracking is the entrainment of endogenous cortical
rhythms, which is under debate (Obleser and Kayser, 2019).

Another application of this research is the integration of neurosci-
entific research findings into the engineering of hearing aids. This ap-
proach exploits the quantifiable similarity between the attended speech
signal and neural signatures of speech processing. With these methods,
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the focus of the listener’s attention can be decoded and the attended
speech signal can be selectively amplified. Technological advances like
the “ear-EEG” (Kidmose et al., 2013) and the “cEEGgrid” (Debener et al.,
2015; Mirkovic et al., 2016) allow for efficient and discreet recording
of EEG, and advances in attention-decoding algorithms (Fiedler et al.,
2016; Han et al., 2019) further improve the applicability of these de-
vices. Our study provides additional evidence that speech tracking oc-
curs in difficult listening situations in healthy older adults, which under-
scores the feasibility of this new technological feature of hearing aids.

5. Conclusion

In this study, we showed that interrupted speech elicits neural speech
tracking in older adults with normal hearing and that neural speech
tracking is highly specific to the IR. Although our sample consisted of
normal hearing individuals who could amplify the stimuli if necessary,
we found a negative relationship between hearing thresholds and the
understanding of interrupted speech. This relationship suggests a critical
role for even slightly elevated hearing thresholds in speech processing.
Additionally, neural speech tracking in the theta frequency band was
positively related to the understanding of interrupted speech. Therefore,
neural speech tracking might be a candidate training mechanism for
older adults with hearing loss.
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